Brodioside B, a Novel (20R,22S)-Spirostanol Tetrasaccharide from Brodiaea californica Tubers

Osamu NAKAMURA, Yoshihiro MIMAKI, Yutaka SASHIDA,* Tamotsu NIKAIDO,† and Taichi OHMOTO†

Tokyo College of Pharmacy, 1432-1, Horinouchi, Hachioji, Tokyo 192-03 [†]Faculty of Pharmaceutical Sciences, Toho University, 2-2-1, Miyama, Funabashi, Chiba 274

A novel (20*R*,22*S*)-spirostanol tetrasaccharide, named brodioside B, was isolated from *Brodiaea californica* together with a new (25*S*)-ruscogenin tetrasaccharide, named brodioside A. Their structures were determined by extensive 2D NMR analysis and hydrolysis. Brodiosides A and B were active as a cyclic AMP phosphodiesterase inhibitor.

The genus *Brodiaea* with fifteen species is classified to the subfamily Allioideae in Liliaceae along with the genera *Dichelostemma*, *Ipheion*, and *Triteleia*. 1) The Allioideae plants expected to produce steroidal saponins as one of the main secondary methabolites. 2) *Brodiaea californica* is indigenous to north California and no chemical work appears to have been done on the plant. Our attention to the steroidal constituents in *B. californica* tubers has resulted in finding a novel (20*R*,22*S*)-spirostanol tetrasaccharide together with a new (25*S*)-ruscogenin tetrasaccharide. This paper briefly refers to the structural elucidation of the new saponins based on extensive 2D NMR analysis and the products formed on acid-catalysed hydrolysis.

The MeOH extract of the fresh tubers of B. californica (3.0 kg) was chromatographed on silica-gel with a gradient mixture of CH_2Cl_2 - MeOH to give three fractions (I - III). Fraction III contained steroidal saponins and aboundant saccharides, from which the saccharides were removed by passing through a Diaion HP-20 column eluting with H_2O gradually enriched with MeOH. The saponin fraction thus prepared was subjected to column chromatography on silica-gel with $CHCl_3$ - MeOH - H_2O (30:10:1) to give a mixture of compounds 1 and 2, which were separated by preparative HPLC.³⁾

Compound 1 was obtained as an amorphous powder.⁴⁾ The ¹H NMR spectrum of 1 (pyridine- d_5) showed two three-proton singlet signals at δ 1.45 and 0.90, indicating the presence of two angular methyl groups, as well as two three-proton doublet signals at δ 1.10 (J=6.9 Hz) and 1.06 (J=7.1 Hz) assignable to secondary methyl groups, and four anomeric proton signals at δ 6.50 (br s), 5.67 (d, J=7.8 Hz), 4.88 (d, J=7.6 Hz), and 4.72 (d, J=7.8 Hz). Acid hydrolysis of 1 with 1M HCl (dioxane - H₂O, 1 : 1) afforded (25*S*)-spirost-5-ene-1 β ,3 β -diol [(25*S*)-ruscogenin],⁵⁾ and D-glucose, D-xylose and L-rhamnose in relations of 2 : 1 : 1.6) The ¹³C NMR assignments of the aglycone moiety of 1 exhibited a close similarity to those of the reported (25*S*)-ruscogenin 1-*O*-glycosides. The above data led to prove 1 to be (25*S*)-ruscogenin 1-*O*-tetrasaccharide.⁵⁾

Compound 2 7) gave also (25S)-ruscogenin, and D-glucose, D-xylose and L-rhamnose in a ratio of 2:1:1 on acid hydrolysis, however, in the ¹³C NMR spectrum of 2, signals due to the E- and F-ring carbons did not coincide with those of 1. The significant differences were also observed in the shift values of the 18-Me, 21-Me,

and 27-Me protons between the 1 H NMR spectra of **1** and **2**. These data suggested that the aglycone of **2** might be different in the stereostructure from that of **1** with respect to the E- and F-ring parts. The phase-sensitive NOESY spectrum provided certain information for the stereostructure assignment. The 1 H signals were assigned by the 1 H- 1 H COSY spectrum combined with the HOHAHA spectrum prior to the inspection of the NOESY spectrum. The 17-H showed clear NOE correlations with 14-H, 16-H, and 20-H, indicating the D/E *cis* ring junction, and C-20*R* configuration, which were supported by an intense NOE between $12\beta(eq)$ -H and 21-Me. The 20-H, in turn, showed an NOE with 23(eq)-H, giving evidence for C-22*S* (Fig. 1). The C-25*S* configuration was corroborated by the fact that **2** was transformed into (25S)-ruscogenin on acid treatment.

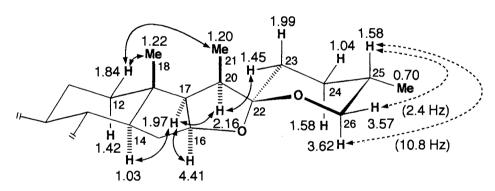


Fig. 1. ¹H NMR chemical shifts (ppm) and NOE correlations of 2 in pyridine- d_5 - methanol- d_4 (10:1). ⁸⁾

The chair-form conformation of the F-ring was confirmed by the ¹H NMR parameters of the 26-H₂ protons ($^3J_{26ax-H(\delta 3.62)-25-H} = 10.8$ Hz and $^3J_{26eq-H(\delta 3.57)-25-H} = 2.4$ Hz) (Fig. 1). Thus, the structure of the aglycone moiety of **2** was concluded to be ($^2S_{25}$)-spirost-5-ene-1 $^2S_{35}$ -diol.

The sequence of the tetrasaccharide moiety of **2** was determined by the following NMR analysis. All 1 H signals due to the monosaccharides could be assigned by a combined use of 1 H- 1 H COSY and HOHAHA spectra (Table 1). Assignments of the 13 C signals of each saccharide were achieved by tracing out the one-bond 1 H- 13 C connectivities through the use of the HMQC spectrum. Comparison of the 13 C shifts thus assigned with those of reference methyl glycosides, 9 together with the known O -glycosylation shift data, indicated that **2** contained a terminal 6 -D-glucopyranosyl unit, a terminal 6 -D-xylopyranosyl unit, a 3-substituted 6 -L-

rhamnopyranosyl unit, and a 2,3-disubstituted β -D-glucopyranosyl unit. The 1 H- 13 C long-range correlation from each anomeric proton traversing the glycosidic linkage to carbon of another substituted monosaccharide or aglycone confirmed the new oligoside structure as shown in Fig. 2. Compound 1 was shown to have the same oligoside structure as 2 by the comparison of the 13 C NMR spectra between 1 and 2.

Accordingly, the structure of **2** was establised as (20R,22S,25S)-spirost-5-ene-1 β ,3 β -diol 1-O-{O- β -D-glucopyranosyl- $(1\rightarrow 3)$ -O- α -L-rhamnopyranosyl- $(1\rightarrow 2)$ -O-glucopyranosyl- $(1\rightarrow 2)$]- β -D-glucopyranoside}, and that of **1** as (25S)-ruscogenin 1-O-glycoside with the same saccharide sequence as **2**.

Wall *et al.* had reported the synthesis of the (20R,22S)-sapogenols, 10 however, to the best of our knowledge, brodioside B is the first (20R,22S)-spirostanol glycoside from a natural sourse.

Table 1. 1 H and 13 C NMR chemical shifts for oligoside unit of **2** in pyridine- d_5 - methanol- d_4 (10:1)

	¹ H NMR		¹³ C NMR
1'	4.71 d	(8.0)	100.4
2' 3'	4.11 dd	(8.8, 8.0)	75.5
3'	3.95 dd	(8.8, 8.8)	88.8
4'	3.80 dd	(8.8, 8.8)	70.1
5' 6'	3.72 ddd	(8.8, 5.9, 2.1)	77.7
6'	4.43 dd	(11.5, 2.1)	63.2
	4.16 dd	(11.5, 5.9)	
1"	6.36 d	(1.6)	101.3
2"	4.90 dd	(3.1, 1.6)	71.8
3"	4.68 dd	(9.5, 3.1)	82.4
4"	4.41 dd	(9.5, 9.5)	73.1
5"	4.83 dq	(9.5, 6.1)	69.3
6"	1.66 d	(6.1)	18.9
1'''	5.52 d	(7.8)	106.2
2'''	4.02 dd	(9.1, 7.8)	76.0
3'''	4.15 dd	(9.1, 9.1)	78.1
4'''	4.07 dd	(9.1, 9.1)	71.6
5'''	4.04 ddd	(9.1, 5.1, 2.2)	78.2
6'''	4.41 dd	(11.5, 2.2)	62.5
	4.17 dd	(11.5, 5.1)	
1''''	4.85 d	(7.7)	105.4
2""	3.88 dd	(8.3, 7.7)	74.6
3""	4.02 dd	(8.3, 8.3)	78.2
4''''	4.04 ddd	(11.0, 8.3, 5.0)	70.5
5''''	4.22 dd	(11.0, 5.0)	67.2
	3.67 dd	(11.0, 11.0)	

J values in parentheses were expressed in Hz

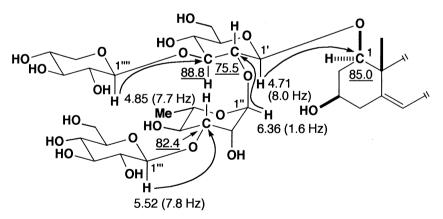


Fig. 2. $^{1}\text{H}^{-13}\text{C}$ long-range correlations of the saccharide moieties of 2 in pyridine- d_5 - methanol- d_4 (10:1). J values in the ^{1}H NMR spectrum are given in parentheses. Underlined figures indicate ^{13}C NMR chemical shifts.

Steroidal saponins bearing oligoside composed of more than four monosaccharides at the C-1 hydroxyl group as 1 and 2 are very rare in nature. (11) Compounds 1 and 2 exhibited inhibitory activity on cyclic AMP

phosphodiesterase (1: IC₅₀ 8.9 x 10⁻⁵ M; 2: 10.0 x 10⁻⁵ M). ¹²⁾

References

- 1) "The Grand Dictionary of Horticulture," ed by Y. Tsukamoto, Shogakukan, Tokyo (1989), Vol. 4, p. 311.
- 2) S. B. Mahato, A. N. Ganguly, and N. P. Sahu, *Phytochemistry*, **21**, 959 (1982).
- 3) Conditions for preparative HPLC to separate the stereoisomers: Tosoh HPLC system (pump: CCPM; detector: RI-8010); column: Kaseisorb LC ODS-120-5 (10 mm i.d. x 250 mm, ODS, 5μm); mobile phase: MeOH H₂O (85: 15), 1.0 ml min⁻¹; column temperature: 5°.
- 4) Compound 1: 118 mg, $[\alpha]_D$ -62.0° (MeOH); negative-ion FABMS m/z 1031 $[M H]^-$; 1H NMR (pyridine- d_5) $\delta = 6.50$ (1H, br s, 1"-H), 5.67 (1H, d, J = 7.8 Hz, 1"-H), 5.56 (1H, br d, J = 5.7 Hz, 6-H), 4.88 (1H, d, J = 7.6 Hz, 1""-H), 4.72 (1H, d, J = 7.8 Hz, 1'-H), 1.70 (3H, d, J = 6.1 Hz, 6"-Me), 1.45 (3H, s, 19-Me), 1.10 (3H, d, J = 6.9 Hz, 21-Me), 1.06 (3H, d, J = 7.1 Hz, 27-Me), and 0.90 (3H, s, 18-Me); ${}^{13}C$ NMR (pyridine- d_5) $\delta = 85.2$, 38.3, 68.1, 43.7, 139.5, 124.9, 31.9, 33.1, 50.5, 42.8, 24.1, 40.4, 40.3, 57.0, 32.3, 81.2, 62.9, 16.9, 15.2, 42.5, 14.8, 109.7, 26.4, 26.2, 27.6, 65.0, and 16.3 (C-1 C-27), 100.5, 75.0, 88.8, 70.2, 77.8, and 63.2 (C-1' C-6'), 101.2, 71.9, 82.6, 73.3, 69.3, and 18.9 (C-1" C-6"), 106.4, 76.2, 78.3, 71.7, 78.4, and 62.6 (C-1"" C-6""), and 105.4, 74.6, 78.3, 70.6, and 67.2 (C-1"" C-5"").
- Y. Watanabe, S. Sanada, Y. Ida, and J. Shoji, *Chem. Pharm. Bull.*, 31, 1980 (1983); T. Asano, T. Murayama, Y. Hirai, and J. Shoji, *ibid.*, 41, 566 (1993).
- 6) The identifications of the monosaccharides including their absolute configurations were achieved by converting them to the 1-[(S)-N-acetyl-α-methylbenzylamino]-1-deoxyalditol acetate derivatives followed by HPLC analysis; R. Oshima, Y. Yamauchi, and J. Kumanotani, Carbohydr. Res., 107, 169 (1982).
- 7) Compound **2**: 39.3 mg, [α]_D -36.0° (MeOH); negative-ion FABMS m/z 1031 [M H]⁻; ¹H NMR (pyridine- d_5) δ = 6.51 (1H, br s, 1"-H), 5.68 (1H, d, J = 7.6 Hz, 1""-H), 5.57 (1H, br d, J = 6.0 Hz, 6-H), 4.89 (1H, d, J = 7.7 Hz, 1""-H), 4.73 (1H, d, J = 7.8 Hz, 1'-H), 1.69 (3H, d, J = 6.1 Hz, 6"-Me), 1.46 (3H, s, 19-Me), 1.24 (3H, s, 18-Me), 1.21 (3H, d, J = 7.4 Hz, 21-Me), and 0.68 (3H, d, J = 5.1 Hz, 27-Me); ¹³C NMR (pyridine- d_5) δ = 85.3, 38.4, 68.2, 43.8, 139.4, 124.9, 31.9, 32.4, 50.6, 42.8, 23.8, 41.3, 41.6, 57.6, 35.4, 83.3, 60.5, 16.5, 15.2, 46.3, 10.2, 106.9, 34.6, 29.6, 30.3, 67.8, and 17.3 (C-1 C-27). Signals for the saccharide part agreed with those of **1** within ± 0.2 ppm.
- 8) The 2D NMR spectra were measured in pyridine- d_5 methanol- d_4 (10:1) to minimize signal overlap.
- 9) P. K. Agrawal, D. C. Jain, R. K. Gupta, and R. S. Thakur, *Phytochemistry*, **24**, 2479 (1985); P. K. Agrawal, *ibid.*, **31**, 3307 (1992).
- 10) M. E. Wall, C. R. Eddy, and S. Serota, J. Am. Chem. Soc., 76, 2849 (1954).
- T. Nohara, A. Nakano, K. Miyahara, T. Komori, and T. Kawasaki, *Tetrahedron Lett.*, **49**, 4381 (1975); T. Nohara, T. Komori, and T. Kawasaki, *Chem. Pharm. Bull.*, **28**, 1437 (1980).
- 12) T. Nikaido, T. Ohmoto, H. Noguchi, T. Kinoshita, H. Saitoh, and U. Sankawa, *Planta Med.*, **43**, 18 (1981).

(Received January 17, 1994)